|
1 | | -@testset "JuMP: constraints" begin |
2 | | - m = Model(CBLS.Optimizer) |
3 | | - |
4 | | - err = _ -> 1.0 |
5 | | - concept = _ -> true |
6 | | - |
7 | | - @variable(m, X[1:10], DiscreteSet(1:4)) |
8 | | - |
9 | | - @constraint(m, X in Error(err)) |
10 | | - @constraint(m, X in Predicate(concept)) |
11 | | - |
12 | | - @constraint(m, X in AllDifferent()) |
13 | | - @constraint(m, X in AllEqual()) |
14 | | - @constraint(m, X in AllEqualParam(2)) |
15 | | - @constraint(m, X in AlwaysTrue()) |
16 | | - @constraint(m, X[1:4] in DistDifferent()) |
17 | | - @constraint(m, X[1:2] in Eq()) |
18 | | - @constraint(m, X in Ordered()) |
19 | | -end |
20 | | - |
21 | | -@testset "JuMP: sudoku 9x9" begin |
22 | | - m, X = sudoku(3) |
23 | | - optimize!(m) |
24 | | - solution_ = value.(X) |
25 | | - display(solution_, Val(:sudoku)) |
26 | | -end |
27 | | - |
28 | | -@testset "JuMP: golomb(5)" begin |
29 | | - m, X = golomb(5) |
30 | | - optimize!(m) |
31 | | - @info "JuMP: golomb(5)" value.(X) |
32 | | -end |
33 | | - |
34 | | -@testset "JuMP: magic_square(3)" begin |
35 | | - m, X = magic_square(3) |
36 | | - optimize!(m) |
37 | | - @info "JuMP: magic_square(3)" value.(X) |
38 | | -end |
39 | | - |
40 | | -@testset "JuMP: n_queens(5)" begin |
41 | | - m, X = n_queens(5) |
42 | | - optimize!(m) |
43 | | - @info "JuMP: n_queens(5)" value.(X) |
44 | | -end |
45 | | - |
46 | | -@testset "JuMP: qap(12)" begin |
47 | | - m, X = qap(12, qap_weights, qap_distances) |
48 | | - optimize!(m) |
49 | | - @info "JuMP: qap(12)" value.(X) |
50 | | -end |
51 | | - |
52 | | -@testset "JuMP: basic opt" begin |
53 | | - model = Model(CBLS.Optimizer) |
54 | | - set_optimizer_attribute(model, "iteration", 100) |
55 | | - @test get_optimizer_attribute(model, "iteration") == 100 |
56 | | - set_time_limit_sec(model, 5.0) |
57 | | - @test time_limit_sec(model) == 5.0 |
58 | | - |
59 | | - @variable(model, x in DiscreteSet(0:20)) |
60 | | - @variable(model, y in DiscreteSet(0:20)) |
61 | | - |
62 | | - @constraint(model, [x,y] in Predicate(v -> 6v[1] + 8v[2] >= 100 )) |
63 | | - @constraint(model, [x,y] in Predicate(v -> 7v[1] + 12v[2] >= 120 )) |
64 | | - |
65 | | - objFunc = v -> 12v[1] + 20v[2] |
66 | | - @objective(model, Min, ScalarFunction(objFunc)) |
67 | | - |
| 1 | +# @testset "JuMP: constraints" begin |
| 2 | +# m = Model(CBLS.Optimizer) |
| 3 | + |
| 4 | +# err = _ -> 1.0 |
| 5 | +# concept = _ -> true |
| 6 | + |
| 7 | +# @variable(m, X[1:10], DiscreteSet(1:4)) |
| 8 | + |
| 9 | +# @constraint(m, X in Error(err)) |
| 10 | +# @constraint(m, X in Predicate(concept)) |
| 11 | + |
| 12 | +# @constraint(m, X in AllDifferent()) |
| 13 | +# @constraint(m, X in AllEqual()) |
| 14 | +# @constraint(m, X in AllEqualParam(2)) |
| 15 | +# @constraint(m, X in AlwaysTrue()) |
| 16 | +# @constraint(m, X[1:4] in DistDifferent()) |
| 17 | +# @constraint(m, X[1:2] in Eq()) |
| 18 | +# @constraint(m, X in Ordered()) |
| 19 | +# end |
| 20 | + |
| 21 | +# @testset "JuMP: sudoku 9x9" begin |
| 22 | +# m, X = sudoku(3) |
| 23 | +# optimize!(m) |
| 24 | +# solution_ = value.(X) |
| 25 | +# display(solution_, Val(:sudoku)) |
| 26 | +# end |
| 27 | + |
| 28 | +# @testset "JuMP: golomb(5)" begin |
| 29 | +# m, X = golomb(5) |
| 30 | +# optimize!(m) |
| 31 | +# @info "JuMP: golomb(5)" value.(X) |
| 32 | +# end |
| 33 | + |
| 34 | +# @testset "JuMP: magic_square(3)" begin |
| 35 | +# m, X = magic_square(3) |
| 36 | +# optimize!(m) |
| 37 | +# @info "JuMP: magic_square(3)" value.(X) |
| 38 | +# end |
| 39 | + |
| 40 | +# @testset "JuMP: n_queens(5)" begin |
| 41 | +# m, X = n_queens(5) |
| 42 | +# optimize!(m) |
| 43 | +# @info "JuMP: n_queens(5)" value.(X) |
| 44 | +# end |
| 45 | + |
| 46 | +# @testset "JuMP: qap(12)" begin |
| 47 | +# m, X = qap(12, qap_weights, qap_distances) |
| 48 | +# optimize!(m) |
| 49 | +# @info "JuMP: qap(12)" value.(X) |
| 50 | +# end |
| 51 | + |
| 52 | +# @testset "JuMP: basic opt" begin |
| 53 | +# model = Model(CBLS.Optimizer) |
| 54 | +# set_optimizer_attribute(model, "iteration", 100) |
| 55 | +# @test get_optimizer_attribute(model, "iteration") == 100 |
| 56 | +# set_time_limit_sec(model, 5.0) |
| 57 | +# @test time_limit_sec(model) == 5.0 |
| 58 | + |
| 59 | +# @variable(model, x in DiscreteSet(0:20)) |
| 60 | +# @variable(model, y in DiscreteSet(0:20)) |
| 61 | + |
| 62 | +# @constraint(model, [x,y] in Predicate(v -> 6v[1] + 8v[2] >= 100 )) |
| 63 | +# @constraint(model, [x,y] in Predicate(v -> 7v[1] + 12v[2] >= 120 )) |
| 64 | + |
| 65 | +# objFunc = v -> 12v[1] + 20v[2] |
| 66 | +# @objective(model, Min, ScalarFunction(objFunc)) |
| 67 | + |
| 68 | +# optimize!(model) |
| 69 | + |
| 70 | +# @info "JuMP: basic opt" value(x) value(y) (12*value(x)+20*value(y)) |
| 71 | +# end |
| 72 | + |
| 73 | +# @testset "JuMP: Chemical equilibrium" begin |
| 74 | +# m, X = chemical_equilibrium(atoms_compounds, elements_weights, standard_free_energy) |
| 75 | +# # set_optimizer_attribute(m, "iteration", 10000) |
| 76 | +# # set_time_limit_sec(m, 120.0) |
| 77 | +# optimize!(m) |
| 78 | +# @info "JuMP: $compounds_names ⟺ $mixture_name" value.(X) |
| 79 | +# end |
| 80 | + |
| 81 | +@testset "JuMP: Scheduling" begin |
| 82 | + model, completion_times, start_times = scheduling(processing_times, due_times) |
68 | 83 | optimize!(model) |
69 | | - |
70 | | - @info "JuMP: basic opt" value(x) value(y) (12*value(x)+20*value(y)) |
71 | | -end |
72 | | - |
73 | | -@testset "JuMP: Chemical equilibrium" begin |
74 | | - m, X = chemical_equilibrium(atoms_compounds, elements_weights, standard_free_energy) |
75 | | - # set_optimizer_attribute(m, "iteration", 10000) |
76 | | - # set_time_limit_sec(m, 120.0) |
77 | | - optimize!(m) |
78 | | - @info "JuMP: $compounds_names ⟺ $mixture_name" value.(X) |
| 84 | + @info solution_summary(model) |
| 85 | + @info "JuMP: scheduling" value.(start_times) value.(completion_times) processing_times due_times |
| 86 | + @info (value.(start_times)+processing_times == value.(completion_times)) |
79 | 87 | end |
0 commit comments