diff --git a/monai/losses/perceptual.py b/monai/losses/perceptual.py index 720f93a1f4..284dfd0af0 100644 --- a/monai/losses/perceptual.py +++ b/monai/losses/perceptual.py @@ -49,14 +49,19 @@ class PerceptualLoss(nn.Module): Args: spatial_dims: number of spatial dimensions. - network_type: {``"alex"``, ``"vgg"``, ``"squeeze"``, ``"radimagenet_resnet50"``, - ``"medicalnet_resnet10_23datasets"``, ``"medicalnet_resnet50_23datasets"``, ``"resnet50"``} - Specifies the network architecture to use. Defaults to ``"alex"``. + network_type: type of network for perceptual loss. One of: + - "alex" + - "vgg" + - "squeeze" + - "radimagenet_resnet50" + - "medicalnet_resnet10_23datasets" + - "medicalnet_resnet50_23datasets" + - "resnet50" is_fake_3d: if True use 2.5D approach for a 3D perceptual loss. fake_3d_ratio: ratio of how many slices per axis are used in the 2.5D approach. cache_dir: path to cache directory to save the pretrained network weights. pretrained: whether to load pretrained weights. This argument only works when using networks from - LIPIS or Torchvision. Defaults to ``"True"``. + LIPIS or Torchvision. Defaults to ``True``. pretrained_path: if `pretrained` is `True`, users can specify a weights file to be loaded via using this argument. This argument only works when ``"network_type"`` is "resnet50". Defaults to `None`. @@ -64,7 +69,7 @@ class PerceptualLoss(nn.Module): extract the expected state dict. This argument only works when ``"network_type"`` is "resnet50". Defaults to `None`. channel_wise: if True, the loss is returned per channel. Otherwise the loss is averaged over the channels. - Defaults to ``False``. + Defaults to ``False``. """ def __init__(