You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Clean up CausalInference.md by removing packages removed from CRAN
Several packages have been removed from CRAN since the task view was written. This removes them, and for endoSwitch implements a replacement package suggestion.
outcomes with or without competing risks). For parametric models, g-computation is the same as estimating average marginal effects, which can be achieved using `r pkg("margins")`, `r pkg("marginaleffects")`, `r pkg("modelbased")`, and `r pkg("stdReg")`.
109
-
- *Matching* methods are implemented in `r pkg("MatchIt", priority = "core")`, which provides wrappers for a number of popular methods including propensity score matching and subclassification, (coarsened) exact matching, full matching, and cardinality matching; more specialized matching methods are implemented in some of the packages below, some of which MatchIt depends on. `r pkg("MatchThem")` provides a wrapper for MatchIt with multiply-imputed data. `r pkg("Matching", priority = "core")` performs nearest neighbor and genetic matching and implements Abadie and Imbens-style matching imputation estimators. `r pkg("optmatch")` performs optimal matching using network flows; several other packages rely on the same infrastructure, including `r pkg("DiPs")` (near-fine matching with directional penalties), `r pkg("matchMulti")` (optimal matching for clustered data), `r pkg("rcbalance")` and `r pkg("rcbsubset")` (optimal matching for refined balance), `r pkg("approxmatch")` (near-optimal matching for multi-category treatments), and `r pkg("match2C")` (optimal matching using two criteria). Other packages include `r pkg("cem")` (coarsened exact matching), `r pkg("designmatch")` (optimization-based matching using mixed integer programming), `r pkg("stratamatch")` (matching and stratification in large datasets), `r pkg("FLAME")` (almost-matching-exactly via learned weighted Hamming distance), `r pkg("PanelMatch")` (matching with time-series cross-sectional data), and `r pkg("CausalGPS")` (generalized propensity score matching for continuous treatments).
110
-
- *Inverse propensity weighting* (IPW, also known as inverse probability of treatment weighting, IPTW) methods are implemented in `r pkg("WeightIt", priority = "core")`, which provides implementations and wrappers for several popular weighting methods for binary, multi-category, continuous, and longitudinal treatments. `r pkg("MatchThem")` provides a wrapper for WeightIt with multiply-imputed data. `r pkg("PSweight", priority = "core")` offers propensity score weighting and uncertainty estimation using M-estimation. `r pkg("clusteredinterference")` and `r pkg("inferference")` offer weighting methods in the context of interference. Several packages offer specialized methods of estimating balancing weights for various treatment types, which may or may not involve a propensity score: `r pkg("CBPS")` (generalized method of moments-based propensity score estimation for binary, multi-category, continuous, and longitudinal treatments), `r pkg("twang")` and `r pkg("twangContinuous")` (propensity score weighting using gradient boosting machines for binary, multi-category, continuous, and longitudinal treatments), `r pkg("sbw")` and `r pkg("optweight")` (optimization-based weights using quadratic programming), and `r pkg("ebal")` (entropy balancing). `r pkg("mvGPS")` estimates weights for multivariate treatments using WeightIt's infrastructure. *Matching-adjusted indirect comparison*, a relative of propensity score weighting when unit-level data is only available for some groups, is available in `r pkg("maic")`, `r pkg("maicChecks")`, and `r pkg("optweight")` (using the `optweight.svy()` function).
104
+
- *Matching* methods are implemented in `r pkg("MatchIt", priority = "core")`, which provides wrappers for a number of popular methods including propensity score matching and subclassification, (coarsened) exact matching, full matching, and cardinality matching; more specialized matching methods are implemented in some of the packages below, some of which MatchIt depends on. `r pkg("MatchThem")` provides a wrapper for MatchIt with multiply-imputed data. `r pkg("Matching", priority = "core")` performs nearest neighbor and genetic matching and implements Abadie and Imbens-style matching imputation estimators. `r pkg("optmatch")` performs optimal matching using network flows; several other packages rely on the same infrastructure, including `r pkg("DiPs")` (near-fine matching with directional penalties), `r pkg("matchMulti")` (optimal matching for clustered data), `r pkg("rcbalance")` and `r pkg("rcbsubset")` (optimal matching for refined balance), and `r pkg("approxmatch")` (near-optimal matching for multi-category treatments). Other packages include `r pkg("cem")` (coarsened exact matching), `r pkg("designmatch")` (optimization-based matching using mixed integer programming), `r pkg("stratamatch")` (matching and stratification in large datasets), `r pkg("FLAME")` (almost-matching-exactly via learned weighted Hamming distance), `r pkg("PanelMatch")` (matching with time-series cross-sectional data), and `r pkg("CausalGPS")` (generalized propensity score matching for continuous treatments).
105
+
- *Inverse propensity weighting* (IPW, also known as inverse probability of treatment weighting, IPTW) methods are implemented in `r pkg("WeightIt", priority = "core")`, which provides implementations and wrappers for several popular weighting methods for binary, multi-category, continuous, and longitudinal treatments. `r pkg("MatchThem")` provides a wrapper for WeightIt with multiply-imputed data. `r pkg("PSweight", priority = "core")` offers propensity score weighting and uncertainty estimation using M-estimation. `r pkg("inferference")` offers weighting methods in the context of interference. Several packages offer specialized methods of estimating balancing weights for various treatment types, which may or may not involve a propensity score: `r pkg("CBPS")` (generalized method of moments-based propensity score estimation for binary, multi-category, continuous, and longitudinal treatments), `r pkg("twang")` and `r pkg("twangContinuous")` (propensity score weighting using gradient boosting machines for binary, multi-category, continuous, and longitudinal treatments), `r pkg("sbw")` and `r pkg("optweight")` (optimization-based weights using quadratic programming), and `r pkg("ebal")` (entropy balancing). `r pkg("mvGPS")` estimates weights for multivariate treatments using WeightIt's infrastructure. *Matching-adjusted indirect comparison*, a relative of propensity score weighting when unit-level data is only available for some groups, is available in `r pkg("maicChecks")` and `r pkg("optweight")` (using the `optweight.svy()` function).
111
106
-*Doubly robust methods* involve both a treatment and outcome model. Augmented IPW (AIPW) is implemented in `r pkg("AIPW")`, `r pkg("PSweight")`, `r pkg("DoubleML")`, `r pkg("grf")` (functions `causal_forest` followed by `average_causal_effect`), and `r pkg("causalweight")`. Targeted maximum likelihood estimation (TMLE, also known as targeted minimum loss-based estimation) is available in `r pkg("drtmle")`, `r pkg("tmle", priority = "core")`, `r pkg("ctmle")` (for TMLE with variable selection), `r pkg("ltmle")` (for longitudinal data), and `r pkg("AIPW")`.
112
107
-*Difference in differences* methods are implemented in
113
108
`r pkg("DRDID")` (doubly robust estimators with two
@@ -140,15 +135,12 @@ contact the maintainers.
140
135
other subpopulations. `r pkg("LARF")` uses
141
136
Local Average Response Functions for IV estimation of treatment
142
137
effects with binary endogenous treatment and instrument.
0 commit comments