Skip to content

Commit b3c4ed9

Browse files
committed
optimization with mac
Hoping this would solve the mac issues, if you're a mac user, please report if there is an improvement
1 parent 2411f1e commit b3c4ed9

File tree

1 file changed

+92
-44
lines changed

1 file changed

+92
-44
lines changed

modules/processors/frame/face_swapper.py

Lines changed: 92 additions & 44 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,9 @@
1-
from typing import Any, List
1+
from typing import Any, List, Optional
22
import cv2
33
import insightface
44
import threading
55
import numpy as np
6+
import platform
67
import modules.globals
78
import modules.processors.frame.core
89
from modules.core import update_status
@@ -14,9 +15,9 @@
1415
is_video,
1516
)
1617
from modules.cluster_analysis import find_closest_centroid
17-
# Removed modules.globals.face_swapper_enabled - assuming controlled elsewhere or implicitly true if used
18-
# Removed modules.globals.opacity - accessed via getattr
1918
import os
19+
from collections import deque
20+
import time
2021

2122
FACE_SWAPPER = None
2223
THREAD_LOCK = threading.Lock()
@@ -26,6 +27,16 @@
2627
PREVIOUS_FRAME_RESULT = None # Stores the final processed frame from the previous step
2728
# --- END: Added for Interpolation ---
2829

30+
# --- START: Mac M1-M5 Optimizations ---
31+
IS_APPLE_SILICON = platform.system() == 'Darwin' and platform.machine() == 'arm64'
32+
FRAME_CACHE = deque(maxlen=3) # Cache for frame reuse
33+
FACE_DETECTION_CACHE = {} # Cache face detections
34+
LAST_DETECTION_TIME = 0
35+
DETECTION_INTERVAL = 0.033 # ~30 FPS detection rate for live mode
36+
FRAME_SKIP_COUNTER = 0
37+
ADAPTIVE_QUALITY = True
38+
# --- END: Mac M1-M5 Optimizations ---
39+
2940
abs_dir = os.path.dirname(os.path.abspath(__file__))
3041
models_dir = os.path.join(
3142
os.path.dirname(os.path.dirname(os.path.dirname(abs_dir))), "models"
@@ -69,34 +80,34 @@ def get_face_swapper() -> Any:
6980
model_path = os.path.join(models_dir, model_name)
7081
update_status(f"Loading face swapper model from: {model_path}", NAME)
7182
try:
72-
# Ensure the providers list is correctly passed
73-
# Apply CoreML optimization for Mac systems
83+
# Optimized provider configuration for Apple Silicon
84+
providers_config = []
85+
for p in modules.globals.execution_providers:
86+
if p == "CoreMLExecutionProvider" and IS_APPLE_SILICON:
87+
# Enhanced CoreML configuration for M1-M5
88+
providers_config.append((
89+
"CoreMLExecutionProvider",
90+
{
91+
"ModelFormat": "MLProgram",
92+
"MLComputeUnits": "ALL", # Use Neural Engine + GPU + CPU
93+
"SpecializationStrategy": "FastPrediction",
94+
"AllowLowPrecisionAccumulationOnGPU": 1,
95+
"EnableOnSubgraphs": 1,
96+
"RequireStaticShapes": 0,
97+
"MaximumCacheSize": 1024 * 1024 * 512, # 512MB cache
98+
}
99+
))
100+
else:
101+
providers_config.append(p)
102+
74103
FACE_SWAPPER = insightface.model_zoo.get_model(
75104
model_path,
76-
providers=[
77-
(
78-
(
79-
"CoreMLExecutionProvider",
80-
{
81-
"ModelFormat": "MLProgram",
82-
"MLComputeUnits": "CPUAndGPU",
83-
"SpecializationStrategy": "FastPrediction",
84-
"AllowLowPrecisionAccumulationOnGPU": 1,
85-
},
86-
)
87-
if p == "CoreMLExecutionProvider"
88-
else p
89-
)
90-
for p in modules.globals.execution_providers
91-
],
105+
providers=providers_config,
92106
)
93107
update_status("Face swapper model loaded successfully.", NAME)
94108
except Exception as e:
95109
update_status(f"Error loading face swapper model: {e}", NAME)
96-
# print traceback maybe?
97-
# import traceback
98-
# traceback.print_exc()
99-
FACE_SWAPPER = None # Ensure it remains None on failure
110+
FACE_SWAPPER = None
100111
return None
101112
return FACE_SWAPPER
102113

@@ -105,19 +116,22 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
105116
face_swapper = get_face_swapper()
106117
if face_swapper is None:
107118
update_status("Face swapper model not loaded or failed to load. Skipping swap.", NAME)
108-
return temp_frame # Return original frame if model failed or not loaded
119+
return temp_frame
109120

110121
# Store a copy of the original frame before swapping for opacity blending
111122
original_frame = temp_frame.copy()
112123

113-
# --- Pre-swap Input Check (Optional but good practice) ---
124+
# Pre-swap Input Check with optimization
114125
if temp_frame.dtype != np.uint8:
115-
# print(f"Warning: Input frame is {temp_frame.dtype}, converting to uint8 before swap.")
116126
temp_frame = np.clip(temp_frame, 0, 255).astype(np.uint8)
117-
# --- End Input Check ---
118127

119-
# Apply the face swap
128+
# Apply the face swap with optimized memory handling
120129
try:
130+
# For Apple Silicon, use optimized inference
131+
if IS_APPLE_SILICON:
132+
# Ensure contiguous memory layout for better performance
133+
temp_frame = np.ascontiguousarray(temp_frame)
134+
121135
swapped_frame_raw = face_swapper.get(
122136
temp_frame, target_face, source_face, paste_back=True
123137
)
@@ -195,14 +209,50 @@ def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
195209
return final_swapped_frame
196210

197211

212+
# --- START: Mac M1-M5 Optimized Face Detection ---
213+
def get_faces_optimized(frame: Frame, use_cache: bool = True) -> Optional[List[Face]]:
214+
"""Optimized face detection for live mode on Apple Silicon"""
215+
global LAST_DETECTION_TIME, FACE_DETECTION_CACHE
216+
217+
if not use_cache or not IS_APPLE_SILICON:
218+
# Standard detection
219+
if modules.globals.many_faces:
220+
return get_many_faces(frame)
221+
else:
222+
face = get_one_face(frame)
223+
return [face] if face else None
224+
225+
# Adaptive detection rate for live mode
226+
current_time = time.time()
227+
time_since_last = current_time - LAST_DETECTION_TIME
228+
229+
# Skip detection if too soon (adaptive frame skipping)
230+
if time_since_last < DETECTION_INTERVAL and FACE_DETECTION_CACHE:
231+
return FACE_DETECTION_CACHE.get('faces')
232+
233+
# Perform detection
234+
LAST_DETECTION_TIME = current_time
235+
if modules.globals.many_faces:
236+
faces = get_many_faces(frame)
237+
else:
238+
face = get_one_face(frame)
239+
faces = [face] if face else None
240+
241+
# Cache results
242+
FACE_DETECTION_CACHE['faces'] = faces
243+
FACE_DETECTION_CACHE['timestamp'] = current_time
244+
245+
return faces
246+
# --- END: Mac M1-M5 Optimized Face Detection ---
247+
198248
# --- START: Helper function for interpolation and sharpening ---
199249
def apply_post_processing(current_frame: Frame, swapped_face_bboxes: List[np.ndarray]) -> Frame:
200-
"""Applies sharpening and interpolation."""
250+
"""Applies sharpening and interpolation with Apple Silicon optimizations."""
201251
global PREVIOUS_FRAME_RESULT
202252

203253
processed_frame = current_frame.copy()
204254

205-
# 1. Apply Sharpening (if enabled)
255+
# 1. Apply Sharpening (if enabled) with optimized kernel for Apple Silicon
206256
sharpness_value = getattr(modules.globals, "sharpness", 0.0)
207257
if sharpness_value > 0.0 and swapped_face_bboxes:
208258
height, width = processed_frame.shape[:2]
@@ -225,23 +275,21 @@ def apply_post_processing(current_frame: Frame, swapped_face_bboxes: List[np.nda
225275
continue
226276

227277
face_region = processed_frame[y1:y2, x1:x2]
228-
if face_region.size == 0: continue # Skip empty regions
278+
if face_region.size == 0: continue
229279

230-
# Apply sharpening using addWeighted for smoother control
231-
# Use try-except for GaussianBlur and addWeighted as they can fail on invalid inputs
280+
# Apply sharpening with optimized parameters for Apple Silicon
232281
try:
233-
blurred = cv2.GaussianBlur(face_region, (0, 0), 3) # sigma=3, kernel size auto
234-
sharpened_region = cv2.addWeighted(
282+
# Use smaller sigma for faster processing on Apple Silicon
283+
sigma = 2 if IS_APPLE_SILICON else 3
284+
blurred = cv2.GaussianBlur(face_region, (0, 0), sigma)
285+
sharpened_region = cv2.addWeighted(
235286
face_region, 1.0 + sharpness_value,
236287
blurred, -sharpness_value,
237288
0
238-
)
239-
# Ensure the sharpened region doesn't have invalid values
240-
sharpened_region = np.clip(sharpened_region, 0, 255).astype(np.uint8)
241-
processed_frame[y1:y2, x1:x2] = sharpened_region
242-
except cv2.error as sharpen_e:
243-
# print(f"Warning: OpenCV error during sharpening: {sharpen_e} for bbox {bbox}") # Debug
244-
# Skip sharpening for this region if it fails
289+
)
290+
sharpened_region = np.clip(sharpened_region, 0, 255).astype(np.uint8)
291+
processed_frame[y1:y2, x1:x2] = sharpened_region
292+
except cv2.error:
245293
pass
246294

247295

0 commit comments

Comments
 (0)