Skip to content

๐Ÿง  Neural Networks from Scratch โ€” A hands-on guide to building and understanding neural networks using only Python + NumPy. Learn everything from perceptrons to backpropagation and optimization, bridging math, code, and intuition. ๐Ÿš€

Notifications You must be signed in to change notification settings

Ananddd06/Neural_Networks_from_Scratch

Repository files navigation

๐Ÿง  Neural Networks from Scratch

Welcome to Neural Networks from Scratch!
This repository is your structured guide to understanding, building, and training neural networks from the ground up โ€” without high-level libraries.

Weโ€™ll cover everything: ๐Ÿ”ข math โ†’ ๐Ÿ—๏ธ implementation โ†’ ๐Ÿค– applications.


๐Ÿ“š Table of Contents

  1. ๐ŸŒŸ Introduction to Neural Networks
  2. ๐Ÿงฌ Biological Inspiration
  3. ๐Ÿ”— Neurons & Perceptrons
  4. โšก Activation Functions
  5. ๐Ÿ”„ Forward Propagation
  6. ๐Ÿ“‰ Loss Functions
  7. ๐Ÿ”ง Gradient Descent & Backpropagation
  8. ๐Ÿš€ Optimization Algorithms
  9. ๐Ÿ›ก๏ธ Regularization Techniques
  10. ๐Ÿ—๏ธ Deep Neural Networks
  11. ๐Ÿ–ผ๏ธ Convolutional Neural Networks (CNNs)
  12. โณ Recurrent Neural Networks (RNNs)
  13. ๐Ÿ‹๏ธ Training Best Practices
  14. ๐Ÿงฉ Projects & Applications
  15. ๐Ÿ“– References & Further Reading

๐ŸŒŸ 1. Introduction to Neural Networks

  • ๐Ÿค” What is a Neural Network?
  • ๐Ÿ•ฐ๏ธ History (Perceptron โ†’ Deep Learning)
  • ๐Ÿ› ๏ธ Why build from scratch?

๐Ÿงฌ 2. Biological Inspiration

  • ๐Ÿง  Neurons in the human brain
  • โš–๏ธ Synaptic weights & signals
  • ๐Ÿค– Artificial neuron modeling

๐Ÿ”— 3. Neurons & Perceptrons

  • ๐Ÿงฉ Structure of a perceptron
  • โž• Weighted sum & bias
  • โ†”๏ธ Linear separability
  • โŒ XOR problem limitations

โšก 4. Activation Functions

  • ๐ŸŸข Sigmoid โ†’ Probability mapping
  • ๐Ÿ”ต Tanh โ†’ Centered outputs
  • ๐ŸŸ  ReLU โ†’ Sparse activations & fast learning
  • ๐ŸŸฃ Leaky ReLU, ELU, GELU
  • ๐Ÿงญ When to use which function

๐Ÿ”„ 5. Forward Propagation

  • ๐Ÿ“Š Layer-wise computation
  • ๐Ÿงฎ Matrix representation
  • ๐Ÿ“ฆ Batch inputs
  • ๐Ÿ“ Example with a small NN

๐Ÿ“‰ 6. Loss Functions

  • ๐Ÿ”ข Regression: Mean Squared Error (MSE)
  • ๐ŸŽฏ Classification: Cross-Entropy Loss
  • โš–๏ธ Hinge Loss, KL Divergence
  • ๐ŸŽฏ Intuition: why minimize loss?

๐Ÿ”ง 7. Gradient Descent & Backpropagation

  • ๐ŸŒ€ Gradient intuition
  • ๐Ÿ“ Derivatives of activation functions
  • ๐Ÿ”— Chain rule in backprop
  • ๐Ÿšง Vanishing & exploding gradients

๐Ÿš€ 8. Optimization Algorithms

  • ๐Ÿ“ฆ Batch Gradient Descent
  • ๐ŸŽฒ Stochastic Gradient Descent (SGD)
  • ๐Ÿƒ Momentum
  • ๐Ÿ“‰ RMSProp
  • โšก Adam Optimizer
  • โณ Learning rate schedules

๐Ÿ›ก๏ธ 9. Regularization Techniques

  • ๐Ÿ“‰ Overfitting vs Underfitting
  • โž– L1 / L2 Regularization
  • ๐ŸŽฒ Dropout
  • ๐Ÿ“Š Batch Normalization
  • โฑ๏ธ Early Stopping
  • ๐Ÿ–ผ๏ธ Data Augmentation

๐Ÿ—๏ธ 10. Deep Neural Networks

  • ๐Ÿ—๏ธ Stacking multiple layers
  • ๐ŸŒ Universal Approximation Theorem
  • โš–๏ธ Initialization (Xavier, He)
  • โ†”๏ธ Depth vs Width trade-offs

๐Ÿ–ผ๏ธ 11. Convolutional Neural Networks (CNNs)

  • ๐Ÿ” Convolution operation
  • ๐Ÿงฉ Filters & feature maps
  • ๐Ÿ“ Pooling layers
  • ๐Ÿ† Architectures: LeNet, AlexNet, ResNet

โณ 12. Recurrent Neural Networks (RNNs)

  • โฑ๏ธ Sequential data handling
  • ๐Ÿ”„ Vanilla RNNs
  • ๐Ÿง  LSTM (Long Short-Term Memory)
  • ๐Ÿšช GRU (Gated Recurrent Units)
  • ๐Ÿ’ฌ Applications: NLP, time-series

๐Ÿ‹๏ธ 13. Training Best Practices

  • ๐Ÿงน Data preprocessing & normalization
  • ๐Ÿ“ฆ Mini-batch training
  • ๐ŸŽ›๏ธ Hyperparameter tuning
  • ๐Ÿ“Š Metrics: Accuracy, F1, ROC-AUC
  • ๐Ÿž Debugging training issues

๐Ÿงฉ 14. Projects & Applications

  • โœ๏ธ Handwritten digit recognition (MNIST)
  • ๐Ÿ–ผ๏ธ Image classification
  • ๐Ÿ’ฌ Sentiment analysis
  • ๐Ÿ“ˆ Time-series forecasting
  • ๐ŸŽจ Neural style transfer

๐Ÿ“– 15. References & Further Reading

  • ๐Ÿ“˜ Books
    • Deep Learning โ€“ Ian Goodfellow
    • Neural Networks and Deep Learning โ€“ Michael Nielsen
  • ๐ŸŽ“ Courses
    • Andrew Ng โ€“ Deep Learning Specialization
    • Stanford CS231n โ€“ CNNs for Visual Recognition
    • MIT 6.S191 โ€“ Intro to Deep Learning
  • ๐Ÿ“„ Research Papers
    • Perceptron (Rosenblatt, 1958)
    • Backpropagation (Rumelhart et al., 1986)
    • Deep Residual Learning (He et al., 2015)

๐ŸŽฏ Goal

By completing this journey, you will:

  • ๐Ÿงฎ Understand neural networks mathematically & conceptually
  • ๐Ÿ› ๏ธ Implement networks using only NumPy
  • ๐Ÿ” Build intuition to debug & optimize deep learning models

โœจ Letโ€™s start building Neural Networks from Scratch ๐Ÿš€

About

๐Ÿง  Neural Networks from Scratch โ€” A hands-on guide to building and understanding neural networks using only Python + NumPy. Learn everything from perceptrons to backpropagation and optimization, bridging math, code, and intuition. ๐Ÿš€

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published