Welcome to Neural Networks from Scratch!
This repository is your structured guide to understanding, building, and training neural networks from the ground up โ without high-level libraries.
Weโll cover everything: ๐ข math โ ๐๏ธ implementation โ ๐ค applications.
- ๐ Introduction to Neural Networks
- ๐งฌ Biological Inspiration
- ๐ Neurons & Perceptrons
- โก Activation Functions
- ๐ Forward Propagation
- ๐ Loss Functions
- ๐ง Gradient Descent & Backpropagation
- ๐ Optimization Algorithms
- ๐ก๏ธ Regularization Techniques
- ๐๏ธ Deep Neural Networks
- ๐ผ๏ธ Convolutional Neural Networks (CNNs)
- โณ Recurrent Neural Networks (RNNs)
- ๐๏ธ Training Best Practices
- ๐งฉ Projects & Applications
- ๐ References & Further Reading
- ๐ค What is a Neural Network?
- ๐ฐ๏ธ History (Perceptron โ Deep Learning)
- ๐ ๏ธ Why build from scratch?
- ๐ง Neurons in the human brain
- โ๏ธ Synaptic weights & signals
- ๐ค Artificial neuron modeling
- ๐งฉ Structure of a perceptron
- โ Weighted sum & bias
โ๏ธ Linear separability- โ XOR problem limitations
- ๐ข Sigmoid โ Probability mapping
- ๐ต Tanh โ Centered outputs
- ๐ ReLU โ Sparse activations & fast learning
- ๐ฃ Leaky ReLU, ELU, GELU
- ๐งญ When to use which function
- ๐ Layer-wise computation
- ๐งฎ Matrix representation
- ๐ฆ Batch inputs
- ๐ Example with a small NN
- ๐ข Regression: Mean Squared Error (MSE)
- ๐ฏ Classification: Cross-Entropy Loss
- โ๏ธ Hinge Loss, KL Divergence
- ๐ฏ Intuition: why minimize loss?
- ๐ Gradient intuition
- ๐ Derivatives of activation functions
- ๐ Chain rule in backprop
- ๐ง Vanishing & exploding gradients
- ๐ฆ Batch Gradient Descent
- ๐ฒ Stochastic Gradient Descent (SGD)
- ๐ Momentum
- ๐ RMSProp
- โก Adam Optimizer
- โณ Learning rate schedules
- ๐ Overfitting vs Underfitting
- โ L1 / L2 Regularization
- ๐ฒ Dropout
- ๐ Batch Normalization
- โฑ๏ธ Early Stopping
- ๐ผ๏ธ Data Augmentation
- ๐๏ธ Stacking multiple layers
- ๐ Universal Approximation Theorem
- โ๏ธ Initialization (Xavier, He)
โ๏ธ Depth vs Width trade-offs
- ๐ Convolution operation
- ๐งฉ Filters & feature maps
- ๐ Pooling layers
- ๐ Architectures: LeNet, AlexNet, ResNet
- โฑ๏ธ Sequential data handling
- ๐ Vanilla RNNs
- ๐ง LSTM (Long Short-Term Memory)
- ๐ช GRU (Gated Recurrent Units)
- ๐ฌ Applications: NLP, time-series
- ๐งน Data preprocessing & normalization
- ๐ฆ Mini-batch training
- ๐๏ธ Hyperparameter tuning
- ๐ Metrics: Accuracy, F1, ROC-AUC
- ๐ Debugging training issues
- โ๏ธ Handwritten digit recognition (MNIST)
- ๐ผ๏ธ Image classification
- ๐ฌ Sentiment analysis
- ๐ Time-series forecasting
- ๐จ Neural style transfer
- ๐ Books
- Deep Learning โ Ian Goodfellow
- Neural Networks and Deep Learning โ Michael Nielsen
- ๐ Courses
- Andrew Ng โ Deep Learning Specialization
- Stanford CS231n โ CNNs for Visual Recognition
- MIT 6.S191 โ Intro to Deep Learning
- ๐ Research Papers
- Perceptron (Rosenblatt, 1958)
- Backpropagation (Rumelhart et al., 1986)
- Deep Residual Learning (He et al., 2015)
By completing this journey, you will:
- ๐งฎ Understand neural networks mathematically & conceptually
- ๐ ๏ธ Implement networks using only NumPy
- ๐ Build intuition to debug & optimize deep learning models
โจ Letโs start building Neural Networks from Scratch ๐