Skip to content

Comments

⚡️ Speed up method StandaloneCallTransformer._find_balanced_parens by 26% in PR #1318 (fix/js-jest30-loop-runner)#1468

Closed
codeflash-ai[bot] wants to merge 2 commits intomainfrom
codeflash/optimize-pr1318-2026-02-12T16.43.53
Closed

⚡️ Speed up method StandaloneCallTransformer._find_balanced_parens by 26% in PR #1318 (fix/js-jest30-loop-runner)#1468
codeflash-ai[bot] wants to merge 2 commits intomainfrom
codeflash/optimize-pr1318-2026-02-12T16.43.53

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Feb 12, 2026

⚡️ This pull request contains optimizations for PR #1318

If you approve this dependent PR, these changes will be merged into the original PR branch fix/js-jest30-loop-runner.

This PR will be automatically closed if the original PR is merged.


📄 26% (0.26x) speedup for StandaloneCallTransformer._find_balanced_parens in codeflash/languages/javascript/instrument.py

⏱️ Runtime : 9.01 milliseconds 7.12 milliseconds (best of 134 runs)

📝 Explanation and details

The optimized code achieves a 26% runtime improvement by replacing character-by-character iteration with regex-based scanning to find special characters (quotes, parentheses, backslashes). This optimization significantly reduces Python-level loop overhead by leveraging compiled regex's C-level string scanning.

Key optimization:

  • Original approach: Iterates through every character in the string (108,802 iterations in profiling), checking each one against quotes and parentheses
  • Optimized approach: Uses self._special_char_re.search() to jump directly to the next relevant character, reducing iterations from ~109K to ~16.5K (85% reduction)

Why this is faster:
The regex engine scans through irrelevant characters (letters, numbers, whitespace, operators) at C speed, only stopping at characters that matter for parenthesis balancing. Line profiler shows the main while loop went from 110,858 hits (18.6% of time) to just 18,571 hits (8.2% of time).

Performance characteristics by workload:

  • Best speedups (100%+ faster): Large inputs with long stretches of non-special characters benefit most. Tests like test_large_many_simple_arguments (1655% faster) and test_large_object_and_array_literals_complex (1485% faster) show dramatic improvements because regex can skip over lengthy argument lists and object literals in one jump.
  • Moderate slowdowns (30-60%): Small inputs with many special characters pay a regex overhead penalty. Each regex.search() call has setup cost, so when special characters are frequent (e.g., test_deeply_nested_parens_1000 with 73% slower), the optimization's benefits are negated.
  • Trade-off sweet spot: The optimization excels when the function is called on realistic JavaScript code with long argument lists, string literals, or object/array structures—common in test instrumentation scenarios.

Impact on workloads:
Given that StandaloneCallTransformer instruments JavaScript test code by finding function call boundaries, the typical use case involves parsing moderate-to-large code snippets with mixed content (strings, nested calls, object literals). The 26% average improvement suggests real-world code has enough non-special character sequences to benefit from regex scanning, making this optimization valuable for the hot path of JavaScript test instrumentation.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 2131 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Click to see Generated Regression Tests
from types import \
    SimpleNamespace  # used to create a minimal object with attributes

# imports
import pytest  # used for our unit tests
from codeflash.languages.javascript.instrument import StandaloneCallTransformer

# Note:
# We create a minimal FunctionToOptimize-like object using SimpleNamespace so that
# StandaloneCallTransformer can read .function_name and .qualified_name. This avoids
# depending on the concrete constructor signature of a domain class while still
# providing a real object instance (from the standard library).

# Helper to create a transformer with a given function name
def _make_transformer(func_name: str = "fn"):
    # build a minimal object expected by the transformer's constructor
    fto = SimpleNamespace(function_name=func_name, qualified_name=func_name)
    return StandaloneCallTransformer(fto, capture_func="codeflash.capture")

# -------------------------
# Basic tests
# -------------------------

def test_returns_none_when_position_not_open_paren():
    # create transformer for function name 'any'
    t = _make_transformer("any")
    s = "no parentheses here"
    # position 0 does not contain '(' so should return (None, -1)
    content, pos = t._find_balanced_parens(s, 0) # 686ns -> 724ns (5.25% slower)

def test_simple_balanced_parens_returns_inner_content_and_end_pos():
    t = _make_transformer("fn")
    s = "(a)"
    # open paren at index 0
    content, pos = t._find_balanced_parens(s, 0) # 1.58μs -> 3.01μs (47.4% slower)

def test_nested_parentheses_return_inner_fragment():
    t = _make_transformer("fn")
    s = "((a))"
    content, pos = t._find_balanced_parens(s, 0) # 1.90μs -> 4.20μs (54.9% slower)

def test_open_paren_in_middle_of_string_is_handled():
    t = _make_transformer("fn")
    s = "prefix(foo)suffix"
    open_pos = s.find("(")  # find where '(' occurs
    content, pos = t._find_balanced_parens(s, open_pos) # 1.79μs -> 2.79μs (35.8% slower)

# -------------------------
# Edge tests
# -------------------------

def test_unbalanced_parentheses_returns_none_and_minus_one():
    t = _make_transformer("fn")
    s = "((unclosed)"
    # open at index 0 should not find a matching close -> returns (None, -1)
    content, pos = t._find_balanced_parens(s, 0) # 2.14μs -> 3.37μs (36.5% slower)

def test_when_open_paren_position_out_of_bounds_returns_none_minus_one():
    t = _make_transformer("fn")
    s = "(x)"
    # passing an index equal to length is out of bounds for an open paren
    content, pos = t._find_balanced_parens(s, len(s)) # 435ns -> 478ns (9.00% slower)

def test_none_code_raises_type_error():
    t = _make_transformer("fn")
    # Passing None for code should raise a TypeError when the function tries to use len()
    with pytest.raises(TypeError):
        t._find_balanced_parens(None, 0) # 2.47μs -> 2.53μs (2.49% slower)

def test_non_integer_position_raises_type_error():
    t = _make_transformer("fn")
    s = "(a)"
    # A non-int index (e.g., a float) cannot be used for string indexing -> TypeError
    with pytest.raises(TypeError):
        t._find_balanced_parens(s, 1.5) # 2.64μs -> 2.65μs (0.302% slower)

def test_parentheses_containing_quoted_parenthesis_are_ignored():
    t = _make_transformer("fn")
    # The inner string contains a ')' which should be ignored as it's inside quotes
    s = "(')')"
    content, pos = t._find_balanced_parens(s, 0) # 2.34μs -> 5.27μs (55.6% slower)

def test_escaped_quote_inside_string_does_not_terminate_string():
    t = _make_transformer("fn")
    # The string contains an escaped single quote: 'a\'b'
    # In Python literal we must escape the backslash itself, so the string is "('a\\'b')"
    s = "('a\\'b')"
    content, pos = t._find_balanced_parens(s, 0) # 2.53μs -> 5.35μs (52.8% slower)

def test_negative_open_paren_index_that_does_not_point_to_paren_returns_none():
    t = _make_transformer("fn")
    s = "abc"  # s[-1] == 'c' not '('
    # When using a negative index that doesn't point at '(', method should return failure
    content, pos = t._find_balanced_parens(s, -1) # 645ns -> 764ns (15.6% slower)

# -------------------------
# Large-scale tests
# -------------------------

def test_deeply_nested_parentheses_1000_levels():
    t = _make_transformer("deep")
    n = 1000
    # Build a deeply nested string: '(' * n + 'x' + ')' * n
    s = "(" * n + "x" + ")" * n
    # Call with the outermost '(' at position 0
    content, pos = t._find_balanced_parens(s, 0) # 171μs -> 638μs (73.1% slower)
    # The inner content should be n-1 opening parens, the 'x', and n-1 closing parens
    expected_inner = "(" * (n - 1) + "x" + ")" * (n - 1)

def test_repeated_calls_on_medium_sized_inputs_are_consistent():
    t = _make_transformer("repeat")
    # Build several medium-length inputs and call the function many times to ensure stable behavior
    fragments = [
        "(alpha)",
        "prefix (one,two) suffix",
        "( 'unmatched ) in string' )",
        "((nested)(pairs))",
    ]
    # Repeat calls up to 1000 iterations to simulate repeated usage and check determinism
    for i in range(1, 1001):
        # pick an input deterministically based on i
        s = fragments[i % len(fragments)]
        open_pos = s.find("(")
        content, pos = t._find_balanced_parens(s, open_pos) # 1.39ms -> 1.46ms (4.30% slower)
        # Validate consistency depending on input pattern
        if s == "(alpha)":
            pass
        elif s == "prefix (one,two) suffix":
            pass
        elif s == "( 'unmatched ) in string' )":
            pass
        elif s == "((nested)(pairs))":
            pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import pytest
from codeflash.discovery.functions_to_optimize import FunctionToOptimize
from codeflash.languages.javascript.instrument import StandaloneCallTransformer

# fixtures
@pytest.fixture
def function_to_optimize():
    """Create a mock FunctionToOptimize instance for testing."""
    func = FunctionToOptimize(
        function_name="testFunc",
        qualified_name="testFunc",
        file_path="test.js",
        start_line=1,
        end_line=5,
        is_async=False
    )
    return func

@pytest.fixture
def transformer(function_to_optimize):
    """Create a StandaloneCallTransformer instance for testing."""
    return StandaloneCallTransformer(function_to_optimize, "codeflash.capturePerf")

def test_basic_empty_parentheses(transformer):
    """Test finding balanced parens with empty arguments."""
    code = "func()"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 1.44μs -> 3.25μs (55.6% slower)

def test_basic_single_argument(transformer):
    """Test finding balanced parens with a single simple argument."""
    code = "func(42)"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 1.73μs -> 3.03μs (43.0% slower)

def test_basic_multiple_arguments(transformer):
    """Test finding balanced parens with multiple arguments."""
    code = "func(a, b, c)"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.10μs -> 2.94μs (28.4% slower)

def test_basic_nested_parens(transformer):
    """Test finding balanced parens with nested function calls."""
    code = "func(inner())"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.25μs -> 4.51μs (50.2% slower)

def test_basic_nested_parens_multiple_levels(transformer):
    """Test finding balanced parens with multiple levels of nesting."""
    code = "func(outer(inner()))"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.85μs -> 5.28μs (45.9% slower)

def test_basic_string_with_parens(transformer):
    """Test finding balanced parens when string contains parentheses."""
    code = 'func("hello(world)")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.88μs -> 5.46μs (47.2% slower)

def test_basic_string_double_quotes(transformer):
    """Test finding balanced parens with double-quoted strings."""
    code = 'func("test")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.42μs -> 4.61μs (47.4% slower)

def test_basic_string_single_quotes(transformer):
    """Test finding balanced parens with single-quoted strings."""
    code = "func('test')"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.50μs -> 4.67μs (46.6% slower)

def test_basic_string_backticks(transformer):
    """Test finding balanced parens with backtick strings."""
    code = "func(`test`)"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.40μs -> 4.75μs (49.4% slower)

def test_basic_string_with_escaped_quote(transformer):
    """Test finding balanced parens with escaped quote in string."""
    code = 'func("test\\"quote")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.86μs -> 5.58μs (48.7% slower)

def test_basic_multiple_string_types(transformer):
    """Test finding balanced parens with mixed string types."""
    code = "func('a', \"b\", `c`)"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 3.43μs -> 6.54μs (47.6% slower)

def test_basic_whitespace_inside_parens(transformer):
    """Test finding balanced parens with whitespace inside."""
    code = "func(  arg1  ,  arg2  )"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.90μs -> 3.11μs (6.87% slower)

def test_edge_invalid_start_position_too_large(transformer):
    """Test with start position beyond string length."""
    code = "func()"
    result, end_pos = transformer._find_balanced_parens(code, 100) # 499ns -> 542ns (7.93% slower)

def test_edge_invalid_start_position_negative(transformer):
    """Test with negative start position."""
    code = "func()"
    result, end_pos = transformer._find_balanced_parens(code, -1) # 673ns -> 720ns (6.53% slower)

def test_edge_start_at_non_paren_character(transformer):
    """Test when start position doesn't point to opening paren."""
    code = "func(arg)"
    result, end_pos = transformer._find_balanced_parens(code, 0) # 636ns -> 679ns (6.33% slower)

def test_edge_unbalanced_missing_closing_paren(transformer):
    """Test with unbalanced parentheses - missing closing paren."""
    code = "func(arg1, arg2"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.08μs -> 1.59μs (30.5% faster)

def test_edge_empty_string(transformer):
    """Test with empty code string."""
    code = ""
    result, end_pos = transformer._find_balanced_parens(code, 0) # 504ns -> 534ns (5.62% slower)

def test_edge_only_opening_paren(transformer):
    """Test with only opening paren, no closing."""
    code = "("
    result, end_pos = transformer._find_balanced_parens(code, 0) # 890ns -> 947ns (6.02% slower)

def test_edge_string_with_closing_paren_inside(transformer):
    """Test string containing closing paren doesn't confuse parser."""
    code = 'func(")")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.35μs -> 5.74μs (59.1% slower)

def test_edge_string_with_closing_paren_multiple(transformer):
    """Test string with multiple closing parens inside."""
    code = 'func("))))")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.54μs -> 6.08μs (58.2% slower)

def test_edge_string_with_escaped_backslash_before_quote(transformer):
    """Test escaped backslash followed by quote in string."""
    code = 'func("test\\\\")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.16μs -> 4.98μs (56.5% slower)

def test_edge_alternating_quote_types(transformer):
    """Test code with alternating different quote types."""
    code = """func("single'nested",'double"nested')`backtick'and"mixed"`)"""
    result, end_pos = transformer._find_balanced_parens(code, 4) # 4.42μs -> 6.80μs (35.1% slower)

def test_edge_deeply_nested_parens(transformer):
    """Test very deep nesting of parentheses."""
    code = "func(((((arg)))))"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.71μs -> 6.61μs (59.0% slower)

def test_edge_many_function_calls_nested(transformer):
    """Test multiple nested function calls."""
    code = "func(a(b(c(d(e())))))"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.99μs -> 7.02μs (57.4% slower)

def test_edge_string_before_nested_parens(transformer):
    """Test string followed by nested parentheses."""
    code = 'func("string", inner(nested()))'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 4.08μs -> 6.19μs (34.1% slower)

def test_edge_single_char_argument(transformer):
    """Test single character argument."""
    code = "func(x)"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 1.65μs -> 2.98μs (44.4% slower)

def test_edge_numeric_argument_negative(transformer):
    """Test negative number as argument."""
    code = "func(-42)"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 1.85μs -> 3.08μs (39.8% slower)

def test_edge_numeric_argument_float(transformer):
    """Test floating point number as argument."""
    code = "func(3.14159)"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.14μs -> 3.13μs (31.4% slower)

def test_edge_object_literal_argument(transformer):
    """Test object literal with nested braces."""
    code = "func({a: 1, b: 2})"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.56μs -> 2.98μs (14.1% slower)

def test_edge_array_literal_argument(transformer):
    """Test array literal with nested brackets."""
    code = "func([1, 2, 3])"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.32μs -> 2.85μs (18.6% slower)

def test_edge_mixed_brackets_and_parens(transformer):
    """Test mixed brackets and parentheses."""
    code = "func([a(), b[c(d)]])"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.86μs -> 5.19μs (45.0% slower)

def test_edge_string_with_multiple_escaped_quotes(transformer):
    """Test string with multiple escaped quotes."""
    code = 'func("a\\"b\\"c")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.83μs -> 6.42μs (55.8% slower)

def test_edge_arrow_function_inside_parens(transformer):
    """Test arrow function as argument."""
    code = "func(() => result())"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.93μs -> 5.17μs (43.2% slower)

def test_edge_async_arrow_function_inside_parens(transformer):
    """Test async arrow function as argument."""
    code = "func(async () => await doSomething())"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 4.20μs -> 5.37μs (21.8% slower)

def test_edge_string_with_newline_escape(transformer):
    """Test string containing escaped newline."""
    code = 'func("line1\\nline2")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.97μs -> 5.08μs (41.6% slower)

def test_edge_string_with_tab_escape(transformer):
    """Test string containing escaped tab."""
    code = 'func("a\\tb")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.45μs -> 5.17μs (52.6% slower)

def test_edge_backtick_template_string(transformer):
    """Test backtick template string."""
    code = "func(`hello ${name}`)"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.94μs -> 4.95μs (40.5% slower)

def test_edge_empty_string_argument(transformer):
    """Test empty string as argument."""
    code = 'func("")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 2.12μs -> 4.68μs (54.8% slower)

def test_edge_whitespace_only_argument(transformer):
    """Test whitespace-only argument."""
    code = "func(   )"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 1.91μs -> 2.88μs (33.7% slower)

def test_edge_comma_separated_empty_strings(transformer):
    """Test multiple empty strings as arguments."""
    code = 'func("", "", "")'
    result, end_pos = transformer._find_balanced_parens(code, 4) # 3.10μs -> 6.17μs (49.7% slower)

def test_edge_start_position_at_paren_multiple_times(transformer):
    """Test that start position matters - different calls in string."""
    code = "outer(inner())"
    # First call at outer paren
    result1, end_pos1 = transformer._find_balanced_parens(code, 5) # 2.25μs -> 4.34μs (48.1% slower)
    
    # Second call at inner paren
    result2, end_pos2 = transformer._find_balanced_parens(code, 11) # 794ns -> 1.32μs (40.0% slower)

def test_edge_very_long_single_argument(transformer):
    """Test with very long argument string."""
    long_arg = "a" * 500
    code = f"func({long_arg})"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 39.8μs -> 5.37μs (640% faster)

def test_large_many_simple_arguments(transformer):
    """Test with many simple comma-separated arguments."""
    # Create 1000 simple arguments
    args = ", ".join([str(i) for i in range(1000)])
    code = f"func({args})"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 386μs -> 22.0μs (1655% faster)

def test_large_deeply_nested_parens_1000(transformer):
    """Test with 1000 levels of nested parentheses."""
    # Create 1000 nested function calls
    code = "func(" + "inner(" * 1000 + "arg" + ")" * 1001
    result, end_pos = transformer._find_balanced_parens(code, 4) # 574μs -> 656μs (12.5% slower)

def test_large_many_strings_with_parens(transformer):
    """Test with 500 strings each containing parentheses."""
    # Create many string arguments with parens inside
    strings = ', '.join([f'"str{i}(paren)"' for i in range(500)])
    code = f"func({strings})"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 607μs -> 723μs (16.1% slower)

def test_large_alternating_strings_and_calls(transformer):
    """Test with alternating string and function call arguments."""
    # Create 500 pairs of (string, function call)
    args = []
    for i in range(500):
        args.append(f'"string{i}"')
        args.append(f'func{i}()')
    code = "func(" + ", ".join(args) + ")"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 950μs -> 764μs (24.4% faster)

def test_large_complex_nested_structure(transformer):
    """Test with complex structure of 100 levels of nesting."""
    # Create: func(obj1.method1(obj2.method2(...obj100.method100(arg)...)))
    code = "func("
    for i in range(100):
        code += f"obj{i}.method{i}("
    code += "arg"
    for i in range(100):
        code += ")"
    code += ")"
    
    result, end_pos = transformer._find_balanced_parens(code, 4) # 127μs -> 73.7μs (72.7% faster)

def test_large_many_escaped_quotes_in_strings(transformer):
    """Test with 100 strings each containing multiple escaped quotes."""
    strings = []
    for i in range(100):
        escaped_content = '\\"'.join(['test'] * 10)
        strings.append(f'"{escaped_content}"')
    code = "func(" + ", ".join(strings) + ")"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 435μs -> 679μs (36.0% slower)

def test_large_mixed_quote_types_large_scale(transformer):
    """Test with large number of mixed quote types."""
    args = []
    for i in range(333):
        args.append(f"'single{i}'")
        args.append(f'"double{i}"')
        args.append(f"`backtick{i}`")
    code = "func(" + ", ".join(args) + ")"
    result, end_pos = transformer._find_balanced_parens(code, 4) # 1.01ms -> 812μs (23.9% faster)

def test_large_object_and_array_literals_complex(transformer):
    """Test with complex object and array literals."""
    # Create: func({a: [1, 2, {b: [3, 4]}], c: {d: [5, 6]}}, ...)
    code = "func("
    for i in range(50):
        code += f"{{key{i}: [1, 2, {{nested: [3, 4]}}], other{i}: {{d: [5, 6]}}}}"
        if i < 49:
            code += ", "
    code += ")"
    
    result, end_pos = transformer._find_balanced_parens(code, 4) # 222μs -> 14.0μs (1485% faster)

def test_large_very_long_code_with_mixed_elements(transformer):
    """Test with very large code string containing mixed elements."""
    # Create a large code string with 200 iterations of various patterns
    code = "func("
    for i in range(200):
        if i % 4 == 0:
            code += f'"string{i}", '
        elif i % 4 == 1:
            code += f"func{i}(), "
        elif i % 4 == 2:
            code += f"{{key: value{i}}}, "
        else:
            code += f"[item{i}], "
    code = code.rstrip(", ") + ")"
    
    result, end_pos = transformer._find_balanced_parens(code, 4) # 199μs -> 86.9μs (130% faster)

def test_large_template_literals_with_nested_braces(transformer):
    """Test with template literals containing nested braces."""
    code = "func("
    for i in range(100):
        code += f"`template{i} with ${{{{key: value{i}}}}} nested`, "
    code = code.rstrip(", ") + ")"
    
    result, end_pos = transformer._find_balanced_parens(code, 4) # 290μs -> 97.5μs (198% faster)

def test_large_performance_many_sequential_calls(transformer):
    """Test performance with many calls to find balanced parens."""
    code = "func(arg1, arg2, arg3, arg4, arg5)"
    # Make 1000 calls and ensure consistency
    results = []
    for _ in range(1000):
        result, end_pos = transformer._find_balanced_parens(code, 4) # 2.49ms -> 889μs (179% faster)
        results.append((result, end_pos))
    
    # All results should be identical
    for result, end_pos in results:
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-pr1318-2026-02-12T16.43.53 and push.

Codeflash Static Badge

The optimized code achieves a **26% runtime improvement** by replacing character-by-character iteration with regex-based scanning to find special characters (quotes, parentheses, backslashes). This optimization significantly reduces Python-level loop overhead by leveraging compiled regex's C-level string scanning.

**Key optimization:**
- **Original approach:** Iterates through every character in the string (108,802 iterations in profiling), checking each one against quotes and parentheses
- **Optimized approach:** Uses `self._special_char_re.search()` to jump directly to the next relevant character, reducing iterations from ~109K to ~16.5K (85% reduction)

**Why this is faster:**
The regex engine scans through irrelevant characters (letters, numbers, whitespace, operators) at C speed, only stopping at characters that matter for parenthesis balancing. Line profiler shows the main while loop went from 110,858 hits (18.6% of time) to just 18,571 hits (8.2% of time).

**Performance characteristics by workload:**
- **Best speedups (100%+ faster):** Large inputs with long stretches of non-special characters benefit most. Tests like `test_large_many_simple_arguments` (1655% faster) and `test_large_object_and_array_literals_complex` (1485% faster) show dramatic improvements because regex can skip over lengthy argument lists and object literals in one jump.
- **Moderate slowdowns (30-60%):** Small inputs with many special characters pay a regex overhead penalty. Each `regex.search()` call has setup cost, so when special characters are frequent (e.g., `test_deeply_nested_parens_1000` with 73% slower), the optimization's benefits are negated.
- **Trade-off sweet spot:** The optimization excels when the function is called on realistic JavaScript code with long argument lists, string literals, or object/array structures—common in test instrumentation scenarios.

**Impact on workloads:**
Given that `StandaloneCallTransformer` instruments JavaScript test code by finding function call boundaries, the typical use case involves parsing moderate-to-large code snippets with mixed content (strings, nested calls, object literals). The 26% average improvement suggests real-world code has enough non-special character sequences to benefit from regex scanning, making this optimization valuable for the hot path of JavaScript test instrumentation.
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Feb 12, 2026
Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
@claude
Copy link
Contributor

claude bot commented Feb 12, 2026

PR Review Summary

Prek Checks

Passed (after auto-fix)

  • Fixed: 1 formatting issue in codeflash/languages/javascript/instrument.py (extra blank line removed by ruff format)
  • Committed and pushed: style: auto-fix linting issues

Mypy

No new issues

  • Pre-existing re.Match missing type parameter warnings (file not in mypy allowlist, matches existing code patterns)

Code Review

No critical issues found

This PR optimizes StandaloneCallTransformer._find_balanced_parens by replacing character-by-character Python iteration with regex-based scanning. The optimization:

  • Correctly preserves all original logic (string literal handling, escape sequences, depth tracking)
  • Jumps directly to the next special character using C-level regex scanning, reducing Python loop iterations
  • Properly handles edge cases: when no special char is found mid-parse, returns (None, -1) as expected

The change is minimal and well-scoped — only the inner loop of _find_balanced_parens is modified.

Test Coverage

File Main PR Delta
codeflash/languages/javascript/instrument.py 68.9% 71.3% +2.3%
Overall 78.5% 78.6% +0.1%
  • ✅ No coverage regression
  • ✅ The optimized method code paths are covered by existing tests
  • ℹ️ Test failures (9) are pre-existing on main (8 failures) — not introduced by this PR

Last updated: 2026-02-12

Base automatically changed from fix/js-jest30-loop-runner to main February 13, 2026 11:46
@codeflash-ai codeflash-ai bot closed this Feb 13, 2026
@codeflash-ai
Copy link
Contributor Author

codeflash-ai bot commented Feb 13, 2026

This PR has been automatically closed because the original PR #1318 by mohammedahmed18 was closed.

@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-pr1318-2026-02-12T16.43.53 branch February 13, 2026 11:46
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants