Skip to content

sumair0/Multimodal-Image-Analysis-and-Retrieval-System

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multimodal Image Analysis and Retrieval System

This project focuses on implementing a semantic image search and relevance feedback system using vector models, indexing and search techniques, classification algorithms, and relevance feedback mechanisms. Additionally, the project involves the implementation of Locality-Sensitive Hashing (LSH) and VA-Files for efficient image indexing and search operations.

Tasks within the project include implementing image labeling, latent semantics computation, classifier selection (SVM, decision-tree, PPR-based), false positive and miss rate computation, LSH tool development, similar image search using LSH index structure, VA-Files index tool development, similar image search using VA-Files index structure, decision-tree-based relevance feedback, SVM-classifier-based relevance feedback, and query and feedback interface implementation.

Operating System

  • Windows 10 Home Edition
  • MacOS Big Sur 11.2.3

Python Version

Python 3.9.4

Required Modules

  • OpenCV cv2
  • NumPy
  • Pandas
  • Scikit-Image (scikit-image)
  • Matplotlib
  • OpenCV-Python
  • Scikit-Learn (scikit-learn)
  • CSVWriter
  • Pillow
  • Networkx

Execution Instructions

  1. Install all required modules by running the following commands in the command line:
pip install scikit-image
pip install matplotlib
pip install opencv-python
pip install numpy
pip install scikit-learn
pip install csvwriter
pip install networkx
pip install pandas
  1. Enter the desired task number from the options provided: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Tasks

Task 1

  • Enter the path for the first folder.
  • Enter the feature model (options: cm, elbp, hog).
  • Enter the value of k.
  • Enter the path for the second folder.
  • Enter the classifier model to be used (options: SVM, decision tree, PPR).

Example:

Enter path for first folder:
1000
Enter feature model:
elbp
Enter k:
5
Enter path for second folder:
100
Enter classifier model to be used:
2

Task 2

  • Enter the path for the first folder.
  • Enter the feature model (options: cm, elbp, hog).
  • Enter the value of k.
  • Enter the path for the second folder.
  • Enter the classifier model to be used (options: SVM, decision tree, PPR).

Example:

Enter path for first folder:
1000
Enter feature model:
elbp
Enter k:
5
Enter path for second folder:
100
Enter classifier model to be used:
2

Task 3

  • Enter the path for the first folder.
  • Enter the feature model (options: cm, elbp, hog).
  • Enter the value of k.
  • Enter the path for the second folder.
  • Enter the classifier model to be used (options: SVM, decision tree, PPR).

Example:

Enter path for first folder:
1000
Enter feature model:
elbp
Enter k:
5
Enter path for second folder:
100
Enter classifier model to be used:
2

Task 4

  • Enter the filepath of the folder to perform LSH on.
  • Enter the feature model (options: cm, elbp, hog).
  • Enter the value of k.
  • Enter the number of Layers.
  • Enter the filepath of the image to perform search on.
  • Enter the value of t.

Example:

Enter the filepath of the folder to perform LSH on:
100
Enter feature model:
elbp
Enter k value:
5
Enter number of Layers:
3
Enter filepath of image to perform search on:
test/image-cc-1-1.png
Enter t value:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages